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Numerical modelling of complex turbulent free-surface flows with
the SPH method: an overview
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SUMMARY

The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational
fluid dynamics (CFD) and appears to be promising in predicting complex free-surface flows. However,
increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas
some authors are still working without any turbulence closure in SPH. A review of recently developed
turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a
one-equation model involving mixing length to more sophisticated (and thus realistic) models like explicit
algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested
and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions
are available in the general field of turbulent free-surface incompressible flows (e.g. open-channel flow
and schematic dam break). They give satisfactory results, even though some progress should be made
in the future in terms of free-surface influence and wall conditions. Recommendations are given to SPH
users to apply this method to the modelling of complex free-surface turbulent flows. Copyright q 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

At the end of the 1970s, the smoothed particle hydrodynamics (SPH) numerical method was
invented to simulate astrophysical problems, for which a meshless formalism is helpful, as pointed
out by Gingold and Monaghan [1]. SPH is a fully Lagrangian method, which means that no
computational mesh or grid is required. At the beginning of the 1980s, this method was successfully
applied to other fields of computational physics [2], in particular for rapid dynamic phenomena
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in solid [3] and fluid dynamics [4]. Today, SPH is becoming one of the most popular meshless
methods for fluid dynamics and is commonly applied to real free-surface flows. The complete
standard SPH equations are here presented in Section 2 and an example is presented and validated
in Section 4 under laminar conditions.

However, literature regarding turbulence modelling in SPH has been quite scarce until now.
Recently, the authors successfully applied mixing length [5, 6] and k–ε [7] models to a turbulent
free-surface channel. A 3D large eddy simulation (LES) model was also applied to the collapse
of a water column in a tank [8], while Shao and Gotoh [9] as well as Dalrymple and Rogers
[10] applied a two-dimensional LES model to wave propagation and interaction with coastal
defence. Given these promising developments, we present here a brief overview of the SPH tools
and applications in computational fluid dynamics (CFD) for turbulent incompressible free-surface
flows. We will include in our presentation a review of available SPH turbulent models based
on transport equations, and try to highlight the advantages and drawbacks of each. The natural
conservation properties of the SPH method will be presented in Section 3, and their consequences
will be discussed. Staring from these considerations, we will first present turbulent closures based
on transport equations like the well known k–ε model (Sections 5 and 6), with validations showing
its advantages and limitations in the case of free-surface flows. An explicit algebraic Reynolds
stress model (EARSM) is then proposed in Section 7, and his benefits are shown, while LES is
presented in Section 8. Advantages and drawbacks of each model will be highlighted.

Our presentation will be supported by applications on schematic cases for which theoretical
solutions or experimental data are available. For practical reasons related to computational cost,
most of the presented application cases are two-dimensional (except in Section 8); however, the
reader should keep in mind that the presented equations are also valid in three dimensions. On a
theoretical point of view, emphasis will be placed on the conservativity properties of the proposed
formulations.

2. THE SPH GOVERNING EQUATIONS

In this section, we briefly present the main ideas of SPH considering the specific field of fluid
dynamics; for more details the reader can refer to References [2, 11]. The SPH formalism is based
on the idea that a flow can be considered as a set of bulk parts of moving fluid referred to as
‘particles’. Each particle a, located at ra , has a constant mass ma and carries a density �a , a pressure
pa , velocity vector ua , dynamic (respectively, kinematic) viscosity �a (respectively, �a = �a/�a),
and more generally different physical quantities if it is required (e.g. temperature or energy). All
these quantities evolve according to governing equations, which are written in terms of fluxes
between particles. At the heart of SPH, any function A of position r is written as a convolution
product with an interpolant kernel function wh :

A(r) =
∫

�
A(r′)wh(r − r′) dr ′ + O(h2) (1)

The summation is extended to the entire domain � and the parameter h, namely the smoothing
length, will be discussed later. Note that Equation (1) would be mathematically exact if the Dirac
distribution �(r − r′) was written in place of wh . The transition to a discrete domain is achieved
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by approximating (1) with a Riemann summation or by using the Monte-Carlo formula:

A(r) =∑
b

mb

�b
A(rb)wh(r − rb) + O(h2) (2)

where b is a dummy subscript referring to each particle present in the domain, the infinitesimal
volume dr ′ being replaced by the volume mb/�b of particle b. Finally, assuming that the SPH
approximation (2) is exact (i.e. neglecting the terms of order h2) and considering the case of a
spherical kernel (i.e. wh only depends on the distance between particle pair), we can write the
value of A at the location of particle a as

A(ra) =∑
b

mb

�b
Abwh(rab) (3)

where Ab is the value of A at the location rb of particle b and rab denotes the distance between a
and b. Equation (3) is called the SPH interpolation. It appears that (3) is differentiable, provided
the kernel is differentiable too; if the function A corresponds to a scalar field, the basic form of
its gradient at particle a can then be obtained by taking the gradient of (3):

∇A(ra) =∑
b

mb

�b
Ab∇awab (4)

in which the symbolic expression ∇a denotes the gradient of the kernel taken with respect to the
co-ordinates of particle a, while wh(rab) is written wab for simplicity. However, as in the finite
element method, the gradient of a scalar field A can here be written in several ways, each one
presenting specific properties. A common way for writing pressure gradient in SPH, for example,
consists of inserting density into the gradient operator in the continuous formalism:

1

�
∇ p=∇ p

�
+ p

�2
∇� (5)

Then, approximating the right-hand side of Equation (5) with relation (4) yields an SPH form of
the pressure force experienced by a:

(
−1

�
∇ p

)
a

= −∑
b
mb

(
pa
�2a

+ pb
�2b

)
∇awab (6)

In contrast to the gradient form (4), Equation (6) is asymmetric with respect to a and b subscripts,
which provides many advantages (see Section 3).

This can also be done for any differential operator such as the divergence of a vector field.
Henceforth, the SPH formalism allows the possibility of estimating any differential operator by
using the kernel, without using any computational grid. A usual kernel example is the fourth-order
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spline, used in most of the applications of the present work:

f (q)= �d
hd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
5

2
− q

)4

− 5

(
3

2
− q

)4

+ 10

(
1

2
− q

)4

if 0� q � 0.5

(
5

2
− q

)4

− 5

(
3

2
− q

)4

if 0.5� q � 1.5

(
5

2
− q

)4

if 1.5� q � 2.5

0 otherwise

(7)

where q is defined as the ratio rab/h and d is the problem dimension (generally 2 or 3). Besides,
�d = 96

1199� if d = 2 and 1
20� if d = 3 to ensure kernel normalization. An important feature of (7) is

that wh is designed with a compact support proportional to h, as shown in Figure 1. The smoothing
length h is commonly proportional to the initial particle spacing �r , so that each particle interacts
with a finite number of neighbour particles (see Figure 2). In SPH equations like (6), it means
that the summation runs over a reduced number of particles b, keeping the number of operations
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Figure 1. View of the fourth-order spline kernel in two dimensions.
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ht 
wall particles 

ghost particles 

fluid particles

Figure 2. Left: particle interactions are commonly restricted to a finite neighbourhood bounded by a disc
(respectively, a sphere) in 2D (respectively, in 3D). Right: wall and ghost particles are used to ensure a

Neumann pressure condition on solid boundaries.

involved in the algorithm proportional to the particle number (for a given ratio h/�r ). A link table
between particles is thus established at each time step to keep the algorithm efficient.

Given these basic tools, the Navier–Stokes equations can be written in SPH formalism. The
continuous Lagrangian form of these equations for a weakly compressible flow is

du
dt

=−1

�
∇ p + �∇2u + g (8)

d�

dt
= −�∇ · u (9)

where g is the acceleration of gravity (low density variations are assumed to have no effect in
the momentum equation (8)). Given approximation (6) and applying similar considerations to the
divergence and Laplace operators lead to a possible SPH form of (8) and (9) as

dua
dt

= −∑
b
mb

[(
pa
�2a

+ pb
�2b

)
∇awab −Pab

]
+ g (10)

d�a
dt

=∑
b
mbuab · ∇awab (11)

where rab = ra − rb and uab =ua − ub. Pab is a viscous force presented in the literature in two
main forms, one proposed by Monaghan [2]:

Pab = 8
�a + �b
�a + �b

uab · rab
r2ab

∇awab (12)

and the second one suggested by Morris et al. [11]:

Pab = �a + �b
�a�b

uab
r2ab

rab · ∇awab (13)

It has been shown in Reference [6] that both model the term �∇2u of (8) and have specific
properties, as shown in Section 3. Note that a small parameter is usually added to r2ab in order
to avoid zero denominators in (12) and (13); however, for simplicity it will be skipped in the
following. Equation (10) is a momentum equation, used to compute particle velocity, while (11)
is an SPH form of the continuity equation, giving particle density. Both can be integrated in time
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through traditional explicit numerical schemes (e.g. Euler or Runge–Kutta), and particle positions
are obtained by velocity integration. Lastly, we need an estimation of pressure. For practical
applications in the field of weakly compressible flows, Monaghan [4] suggested to estimate it from
an equation of state:

pa = �0c
2
0

�

[(
�a
�0

)�

− 1

]
(14)

in which �0 is a reference density, c0 a numerical speed of sound and � = 7 for water. Then, if
c0 is high enough, Equation (14) is suitable for a weakly compressible fluid, which can model
incompressibility with a sufficient accuracy. However, for numerical reasons, the value of c0 in
the model is not the true speed of sound; indeed, the time step is usually subject to some stability
constraints:

�t = min

(
0.4

h

c0
, 0.25min

a

(√
h

�a

)
, 0.125min

a

(
�ah

2

�a

))
(15)

where �a is the modulus of the acceleration of particle a. The first of these conditions is a Courant
criterion; the coefficients are based on numerical experiments (see Reference [11]). The speed
of sound appearing in the first constraint would yield very small time steps if one would set c0
to its physical value; therefore, it is usually recommended to set it to an artificial (numerical)
value equal to 10 times the maximum flow speed, keeping the relative density fluctuations less
than 1%. With this approximation, SPH appears to be a weakly compressible method. It may
be mentioned that pressure estimation from (14) is sometimes subject to instabilities and show
scattered distributions [6]; in order to avoid these difficulties, some authors (e.g. Reference [9])
prefer solving a pressure Poisson equation. However, this approach implies additional numerical
operations while the method based on a state equation remains quite simple; all the flows presented
below were simulated using this approach, which is, according to Monaghan [4], a good balance
between accuracy and simplicity for SPH.

Solid boundaries are often modelled with fixed wall particles and artificial repulsive forces [4],
or alternatively with mirror particles [11]. We prefer the latter solution, since it keeps conservation
laws valid (see Section 3). The main idea is to model walls with ‘wall particles’ (without any
artificial repulsive force) and several layers of ‘ghost particles’ (see Figure 2, right picture), density
of which is prescribed by symmetry when computing particle density through Equation (11). This
means that when a mirror particle b contributes to the density evolution of a fluid particle a through
the right-hand side of Equation (11), the same term is added to the density evolution of particle b.
Thus, Equation (14) keeps pressure forces symmetric with respect to the wall, ensuring an artificial
Neumann condition regarding pressure. Note that, in contrast to the method proposed in many
SPH papers (e.g. Reference [11]), the presented algorithm is based on fixed ghost particles. This
new pressure wall condition enables a perfect impermeability even in rapid dynamic phenomena
such as dam breaking. Besides, contrary to the repulsive forces presented in Reference [3], the
present formulation does not require any ad hoc coefficient. Under laminar conditions, wall and
mirror particles have a zero velocity to prescribe a no-slip condition at the wall. In contrast, in
our turbulent developments (Section 5), we will use the wall particles to prescribe Dirichlet or
Neumann conditions of the modelled physical quantities.
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All the above-mentioned developments show that a strong advantage of the SPH method is the
use of a Lagrangian formalism, for which advection terms are implicitly included in the particle
time derivative (left-hand side of Equations (10) and (11)). One may also emphasize the fact that
the present model and equations are equally valid in two and three dimensions, through the choice
of an appropriate normalization constant in the kernel definition (7). The next section will examine
additional advantages of SPH, in terms of conservation laws.

3. CONSERVATION PROPERTIES

As suggested in the previous section, the asymmetry of SPH equations with respect to a and b
subscripts has a strong physical meaning. In this section, we will investigate this point, leading to
some conclusions of interest for turbulence closures. In Equation (10), the quantity

mamb

[
−
(
pa
�2a

+ pb
�2b

)
∇awab +Pab

]
=Fb→a (16)

is the force exerted by particle b on particle a, showing asymmetry with respect to a and b,
regardless of the model used for viscous forces Pab (see Equations (12) and (13)). Indeed, the
kernel gradient changes its sign when permuting a and b subscripts; hence the SPH form of fluid
forces satisfies the action–reaction law:

Fb→a = −Fa→b (17)

This immediately implies the conservation of total linear momentum for an isolated set of parti-
cles. More generally, the SPH equations have many interesting properties, among which they are
Galilean-invariant. The above-mentioned features come from the fact that Equation (10) can be
partially derived from an action principle (see Reference [12]). It is known that the basic equa-
tions of Lagrangian mechanics, coming from a variational principle, are the so-called Lagrange
equations:

d

dt

�L
�ua

− �L
�ra

= 0 (18)

for each particle a, L being a Lagrange function relative to the whole particle system, equal to the
difference between kinetic and potential energies. Therefore, in SPH formalism, one can introduce
an internal energy ea for each particle, leading to

L = 1

2

∑
b
mbu2b −∑

b
mbeb (19)

Equation (18) then gives the equation of motion for particle a as

ma
dua
dt

=∑
b
mb

�eb
�ra

=∑
b
mb

�eb
��b

��b
�ra

(20)
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An estimation of the last term can be obtained from the SPH interpolation (3):

��b
�ra

= �
�ra

∑
c
mcwbc =ma∇awba + �ab

∑
c
mc∇awac (21)

where �ab refers to Kronecker’s notation. Thus, using the asymmetry of the kernel gradient, (20)
gives

dua
dt

=−∑
b
mb

[(
�e
��

)
a

+
(

�e
��

)
b

]
∇awab (22)

Eventually, the laws of thermodynamics show that internal energy (for non-dissipative media)
satisfies the rule de= −p dV = (p/�2) d�, so that p/�2 is the derivative of internal energy with
respect to the density. Changing �e/�� with p/�2 in (22) leads to the momentum equation (10)
with pressure forces only (i.e. energy-conservative forces). This short demonstration shows that
SPH is a very attractive method, based on strong physical considerations. One may emphasize
the fact that various SPH forms for estimating pressure gradient are available, as in traditional
mesh-based methods. The above-mentioned proof is mainly based on the assumption that the
density should be written as in (21); Bonet and Lok [13] show that different approaches lead to
various pressure gradient forms, all of them being asymmetric, thus conserving linear momentum
and energy.

Shear (viscous) forces can also be accounted for by this approach, considering that fluid shear is
a linear function of velocities (see Reference [14]), like in the Navier–Stokes momentum equation
(8). The most general form of such a linear dependency for the viscous force experienced by a
particle a can be written as

Fvisc
a = −∑

b
Aabuab (23)

in which the Aab’s are second-order positive definite tensors, symmetric in a and b (which are
not denoting tensor indices but particle labels). Equation (23) is a general SPH form of viscous
forces; contrary to pressure forces, they do not appear as the derivative of a lagrangian function L
with respect to positions ra , but as the derivative of a certain function F with respect to velocities
ua . Indeed, one could possibly include them in the momentum equation (18) to yield

d

dt

�L
�ua

− �L
�ra

+ �F
�ua

= 0 (24)

in which F is defined by the following quadratic form:

F = 1

2

∑
a,b

uabAabuab (25)

The physical meaning of F will appear further. Coming back to the forms given in Equation
(10), we now see that mambPab =−Aabuab. Furthermore, as a consequence of A’s symmetry, the
conservation of total linear momentum is preserved, as mentioned earlier. Let us show this result
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more properly. The time derivative of total momentum can be written as

d

dt

∑
a
maua =∑

a
ma

dua
dt

=∑
a

(
�L
�ra

− �F
�ua

)
=∑

a,b
(Fpres

b→a − Aabuab) (26)

where Fpres
b→a represents the part of forces from Equation (16) corresponding to pressure only. Thus,

the properties of asymmetry of Fpres
b→a and uab, together with the symmetry of Aab, show that the

right-hand side of (26) vanishes. However, conservation of angular momentum turns differently.
Using the asymmetry properties of the given variables, one finds

d

dt

∑
a
ra ×maua =∑

a,b
ra × (Fpres

b→a − Aabuab)

= 1

2

∑
a,b

rab × (Fpres
b→a − Aabuab) (27)

Thus, it appears that the conservation of angular momentum of pressure forces is due to the fact
that Fpres

b→a , like ∇awab, is co-linear with rab (see e.g. the right-hand side of Equation (22)). On the
other hand, viscous forces conserve angular momentum only if rab × (Aabuab) = 0, which occurs
if Aab takes the general form

Aab = rab ⊗ bab (28)

where bab is a vector field satisfying bab =−bba . In this case, shear forces (23) can then be
rewritten as

− �F
�ua

=−∑
b

(bab · uab)rab (29)

The form written in (12) is then relevant, with the following choice:

bab =−8mamb
�a + �b
�a + �b

|∇awab|rab
r3ab

(30)

In contrast, the form (13) does not satisfy angular momentum conservation but has another property.
Let us have a look at the general viscous term (23) in the particular case of a rigid body rotation:

− �F
�ua

= −�
∑
b
Aab(e× rab) (31)

where � is an angular velocity and e the unit vector perpendicular to the plane in which the rotation
takes place. It is then easy to show that these shear forces vanish (as required) if and only if

Aab = �abI (32)
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where I is the unit tensor. Equation (13) is a particular form of (32) with

�ab =−mamb
�a + �b
�a�b

rab
r2ab

· ∇awab (33)

In the following, we will prefer the latter choice, given that angular momentum conservation is not
essential for our applications. Finally, we now take a look at energy conservation in Lagrangian
models: Equations (23) and (24) can be used to show (see Reference [14]) that the time derivative
of the total energy E of a set of particles is given by

dE

dt
=−F (34)

Hence, F is simply the energy dissipation rate. This shows that energy loss in SPH is only due to
viscous forces, as in continuous equations. Equation (34) will be of great interest in the context
of turbulence modelling (see Section 5).

To end with conservation properties and in the perspective of turbulent closure models, let us
consider the possibility of modelling a transport and diffusion of a scalar in SPH. Viscous forces
(13) suggest a similar form for general diffusion processes, so that the advection–diffusion equation
for a scalar field C could be written in SPH form as

dCa

dt
= SC,a +∑

b
mb

Ka + Kb

�a�b

Cab

r2ab
rab · ∇awab (35)

where Ca and Ka are, respectively, scalar concentration and dynamic diffusion coefficient corre-
sponding to particle a, while Cab =Ca − Cb and SC is a source term. Many authors proposed
similar models (see e.g. Reference [15] for temperature conductivity). Again, the asymmetry of
Equation (35) can be interpreted in terms of conservation: forgetting the source term, it comes that
the quantity

mamb
Ka + Kb

�a�b

Cab

r2ab
rab · ∇awab = qC,a (36)

is the C-flux from b to a (if C is measured by unit mass). Then, the total amount of scalar is exactly
conserved. These considerations will be of great interest for turbulent closure (see Section 5). Note
that the C-flux vanishes between two particles carrying the same concentration.

4. APPLICATION TO A LAMINAR FLOW

Before coming to turbulent flows, it appears interesting to test the ability of SPH to simulate
incompressible laminar flows, although it was presented by many authors (see e.g. Reference [11]).
The test case presented here is a 2D periodic hill flow designed within an Ercoftac workshop [16].
It involves about 20 000 fluid particles driven by a horizontal propelling force updated in time
to prescribe the correct flow rate. The Reynolds number, based on the hill height and the bulk
velocity, is equal to 50, and there is no free surface, the upper boundary being a solid wall (hence,
gravity is not considered here). The results, compared with finite volume simulations [16], show an
excellent agreement in terms of velocities (see Figures 3 and 4). One of the key challenges of such
a simulation is the recirculation pattern given in Figure 4. One may mention the fact that numerical
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Figure 3. 2D laminar periodic hill flow simulated with a finite volume method (top) and with present SPH
model (bottom). Axial (left) and vertical (right) velocities. The SPH velocity fields were time-averaged

to reduce numerical fluctuations.
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Figure 4. 2D laminar periodic hill flow simulated with a finite volume method (top left) and with present
SPH model (bottom left). Velocity vectors in the recirculating area. Axial velocity profiles are presented

on the right part; solid lines=finite volume method, symbols= present SPH model.
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fluctuations due to the SPH scheme occur in this case (in particular in the vicinity of the upper
wall); thus the velocity fields presented in Figures 3 and 4 were obtained after time-averaging.
Further information and data regarding the modelling of laminar flows with SPH are presented in
References [6, 17].

5. TRADITIONAL TURBULENT CLOSURES

When considering turbulent flows, all physical quantities like pressures and velocities can be
Reynolds-averaged, which is referred to by overstrike bars in the following. The Reynolds-averaged
Navier–Stokes (RANS) momentum equation then takes the following form:

du
dt

=−1

�
∇ p + ��u − 1

�
∇ · (�R) + g (37)

(from now on, terms like d/dt refer to the Lagrangian derivative following the mean motion). If
velocity turbulent fluctuations are denoted by a vector u′, one can first assume that the Reynolds
stress tensor R=u′ ⊗u′ is modelled through the traditional Boussinesq eddy viscosity assumption,
we write

R= 2
3kI − 2�TS (38)

where �T is an eddy viscosity, k = u′
i u

′
i/2= tr(R)/2 the turbulent kinetic energy and

Si j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(39)

are the components of the mean rate-of-strain tensor S (in contrast to indices a and b referring to
particles, letters i and j here denote spatial co-ordinates). It is known that introducing (38) into
(37) yields a momentum equation similar to the laminar one (8), the molecular viscosity being
increased by the eddy viscosity. Considering formula (13) for modelling eddy viscous terms, the
SPH momentum and continuity equations (10) and (11) can thus be rewritten as

dua
dt

=−∑
b
mb

(
pa
�2a

+ pb
�2b

− �e,a + �e,b
�a�b

uab
r2ab

rab ·
)

∇awab + g (40)

d�a
dt

=∑
b
mbuab · ∇awab (41)

with �e,a = �a + �T,a . Therefore, each particle a is affected by a dynamic eddy viscosity, referred
to as �T,a = �a�T,a . Since we deal here with nearly incompressible flows, we assume that �a ≈ �a .
The Reynolds-averaged pressure is still estimated using the previous equation of state (14). One
may also add to the pressure the quantity 2�k/3, to be consistent with (37); although this new
term is generally dominated by the pressure itself, it is recommended to keep it when k can be
estimated, as in the developments presented herein. One may also note that the conservation laws
presented in Section 3 remain valid with the new momentum equation (40), since the mathematical
form is unchanged in comparison to the laminar equation (10).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:277–304
DOI: 10.1002/fld



NUMERICAL MODELLING OF COMPLEX TURBULENT FREE-SURFACE FLOWS 289

The idea of Reynolds-averaging the SPH equations was presented by Violeau et al. [5] and
Shao and Gotoh [9], using a mixing length turbulent closure. We present here a more sophisticated
approach (see Reference [7]) based on the traditional k–ε model developed in the context of
Eulerian numerical methods. Firstly, one defines for each particle a a turbulent kinetic energy ka
and an energy dissipation rate εa , and assumes the classical dimensional relation:

�T,a =C�
k2a
	a

(42)

in which C� is an empirical constant [18]. Then, additional equations are required to calculate
ka and εa at each time step. The usual Lagrangian transport equation for turbulent kinetic energy
takes the following continuous form:

dk

dt
= P − ε + ∇ ·

[(
� + �T


k

)
∇k

]
(43)

which is a scalar advection–diffusion equation similar to (35) (but in a continuous form), the
production of kinetic energy P acting as a source term while the dissipation ε is a sink one [18].
Thus, in SPH formalism, a transport equation for k can be written in the following form:

dka
dt

= Pa − εa +∑
b
mb

�k,a + �k,b
�a�b

kab
r2ab

rab · ∇awab (44)

where �k,a = �a + �T,a/
k is k’s dynamic diffusivity. Equation (44) involves particle production
Pa , turbulent diffusion (in which kab = ka − kb) and particle dissipation εa . As in usual turbulent
diffusion models, the parameter 
k is a Schmidt number defined as the ratio between the eddy
viscosity and kinetic energy diffusivity. In continuous notations, the production term is defined by
P =−R : S=−Ri j Si j (with Einstein’s notation regarding i and j subscripts), giving together with
(38)

P = �T S
2 (45)

with

S =√
2S : S (46)

referred to as the scalar mean rate-of-strain. However, in order to avoid any overestimation of k in
case of large scalar rate-of-strain (as for instance in the case of impinging jet of breaking wave),
one should keep in mind that turbulence anisotropy is always bounded by C1/2

� (see e.g. Reference
[19]). Hence, we consider here a linear dependency on the rate-of-strain for large deformations,
writing the production of particle a as

Pa = min

(√
C�,C�Sa

ka
εa

)
kaSa (47)

In order to estimate the scalar rate-of-strain Sa relative to particle a, velocity gradients appearing
in (39) can be written in an SPH tensorial form as(

�ui
�x j

ei ⊗ e j

)
a

= �a
∑
b
mb

(
ua
�2a

+ ub
�2b

)
⊗∇awab (48)
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where ei is the unit vector corresponding to the i th co-ordinate. Then, Sa can easily be computed
from (46). However, this method implies an SPH interpolation in the form (48) for each pair of
subscripts i and j, i.e. nine interpolations in 3D, which is not computationally efficient. Alternatively,
one can come back to the continuous definition of energy dissipation for a viscous fluid, writing:

dE

dt
=−

∫
�

��s2 d� (49)

in which s is the scalar rate-of-strain based on true velocities (instead of averaged ones). Thus,
coming back to (25), (32) and (34) and approximating the integral appearing in (49) with the SPH
interpolant (2), one obtains

1

2

∑
a,b

�abu2ab =∑
a
ma�as

2
a (50)

This equation suggests an SPH form for sa :

s2a = 1

2�ama

∑
b

�abu2ab (51)

Eventually, considering the definition (33) for the �ab’s and coming back to averaged notations,
we get

S2a =−1

2

∑
b
mb

�a + �b
�a�b

u2ab
r2ab

rab · ∇awab (52)

where uab = |uab|. Equation (52), based on a single interpolation, will be preferably used in the
following. Note that the right-hand side of (52) is always positive, since ∇awab · rab is negative.

In the SPH k–ε model, (44) is integrated in time to calculate ka using a temporal numerical
scheme as for Equation (10). The dissipation rate ε can be similarly calculated, solving a new
equation written in SPH language as

dεa
dt

= εa

ka
(Cε,1Pa − Cε,2εa) +∑

b
mb

�ε,a + �ε,b

�a�b

εab

r2ab
rab · ∇awab (53)

with �ε,a = �a + �T,a/
ε. and εab = εa − εb. Equation (53) is an SPH form of the traditional
advection–diffusion equation for the dissipation rate [18]. Alternatively, the dissipation can be
estimated from a dimensional relation like

	a =C3/4
�

k3/2a

Lm,a
(54)

where Lm,a is a mixing length attached to particle a, which can be proportional to the particle
size, or alternatively defined as a function of particle position for simple shear flows. In contrast
to Equation (53), model (54) (here referred to as k–Lm) does not need any numerical scheme for
ε; on the other hand, it requires the definition of a mixing length. Moreover, it has been shown in
the past that the use of a differential equation for estimating ε gives much better results, and this
is also true in the SPH context (see Section 7).

Both k and ε equations in SPH forms (44) and (53) satisfy the conservation properties mentioned
in Section 3; in other terms, the diffusion terms are not responsible for any artificial energy loss,
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only contributing to the spatial re-distribution of k and ε in time through appropriate fluxes between
particles. We use here the set of constant values recommended by Launder and Spalding [18]:
C� = 0.09, 
k = 1.0, 
ε = 1.3, Cε,1 = 1.44 and Cε,2 = 1.92. Dirichlet wall boundary conditions for
kinetic energy and mean velocity are specified as

ka = u2∗,a√
C�

ua
u∗,a

= 1

�
ln

�u∗,a

�a
+ 5.2

(55)

for all particles located on solid boundaries (wall particles only). In the traditional log-law appearing
in (55), �= 0.41 is von Karman’s constant, while u∗,a is the shear velocity relative to wall particle
a and �a its molecular kinematic viscosity. � is a distance arbitrarily chosen small enough in
comparison to the particle size, but larger than the viscous sub-layer thickness. Note that a rough
log-law for near-wall velocities can be easily programmed as a wall function in place of the smooth
one (55). Eventually, the value of shear velocity attached to a wall particle can be estimated from
the wall velocity gradient given by (48). In the k–ε SPH model, a Neumann wall condition for
ε is enforced by setting the diffusion term appearing in (53) as u4∗/
ε�

2 for all wall particles.
However, this specific wall condition breaks conservativity for ε diffusion; indeed, prescribing a
consistent Neumann boundary condition seems difficult, since ε presents a very high gradient near
the wall. The use of symmetry based on mirror particles as we presented in Section 2 for density
and pressure is thus unefficient in the case of ε.

Specific free-surface boundary conditions are not considered here, provided the lack of particles
in the vicinity of a free surface makes all quantities rapidly decreasing when approaching the surface
(as for pressure), which is enough for numerical stability and physical meaning. In particular,
pressure, eddy viscosity and turbulent kinetic energy vanish near the free surface. A more accurate
approach would require further investigation; however, since SPH was designed to treat complicated
flows, identifying the particles located on the free surface seems not always straightforward.

An example of SPH turbulent computation in a 2D steady periodic (i.e. ‘infinite’) open-channel
flow using the above-mentioned equations, is briefly presented in Figure 5. The water depth
is H = 0.4m and the computation involves 40× 40 fluid particles driven by a horizontal force

H

direction of
the flow

L = H 

free surface 

bottom (z = 0)

Figure 5. Sketch of the open-channel.
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playing the role of the pressure gradient resulting from a bed slope. We consider here a wall with
roughness of 0.01m. The bulk velocity is 0.753m/s, giving a Reynolds number of 301 200 and a
shear velocity of 0.05m/s. Following Nezu and Nakagawa [20], the mixing length was defined as

Lm,a = �za

√
1 − za

H
(56)

where za is the particle distance to the bed level. For this particular case, where the water depth
is constant and thus the free-surface steady, a free-surface condition for energy dissipation was
prescribed following [20], as εa = k3/2a /�H with � = 0.18. Turbulent kinetic energy, dissipation
rate, eddy viscosity and horizontal Reynolds-averaged velocities are compared to experimental
and numerical data from References [20, 21], showing a fairly good agreement (Figure 6). In
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Figure 6. Open-channel turbulent steady flow. Distributions of: (a) k/u2; (b) εH/u3∗;
(c) �T /Hu∗; and (d) axial velocity in m/s versus non-dimensional distance to the bed
z/H (on vertical axis). Present SPH method with © k–Lm model and ♦ k–ε model; —

semi-empirical [20]; × experimental [20]; + finite elements k–ε [21].
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particular, the well-known velocity log-profile is correctly reproduced by the model. However, the
wall Neumann condition regarding ε sometimes leads to underestimations of the eddy viscosity
in the k–ε case. The reader can refer to References [6, 7] for more details about this test case.
Despite its simplicity, it shows the ability of the proposed SPH k–ε model to predict the flow and
averaged turbulent characteristic near a wall under permanent conditions. It also proves that the
wall boundary conditions are correctly specified.

6. COLLAPSE OF A WATER COLUMN

Equations corresponding to the k–ε SPH model presented in the previous section are solved here
in the case of a collapse of a 2m high 2D water column in a tank, due to the gravity. The
complete description of the experimental case is given by Koshizuka and Oka [22], and a brief
sketch is given in Figure 7. The initial width of the column is a = 1m and its height 2a, while
the tank is 4m long, and the flow involves 20 000 fluid particles. Figure 8 presents distributions
of velocity amplitude at different stages during this flow, showing a wave breaking. It must be
emphasized that the k–ε turbulent closure, by providing a physical distribution of eddy viscosity
in space, gives much smoother velocity and pressure fields than traditional SPH viscous models
based on a constant (and sometimes artificial) viscosity, and thus increases the numerical stability
of the method. Numerical tests have shown that a constant viscosity can even reach to numerical
breakdown in the presented case.

From a qualitative point of view, the flow appears realistic; in particular, the treatment of solid
walls seems satisfactory, although the particles positions are slightly scattered in the vicinity of
the lower wall (see Figure 9). Figure 10 provides a quantitative validation of the model, showing
the maximum x-position of the front and water depth on the left vertical wall. Comparison with
experiments conducted in Reference [22] reveal a satisfactory agreement.

The present example shows that the proposed SPH k–ε model can treat complex flows
involving highly disturbed free surfaces and rapid motion. However, no validation can be done

a 

2a

4a

a 

O 

Figure 7. Sketch of the initial configuration of the water column.
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Figure 8. Collapse of a water column in a tank simulated with the present SPH k–ε model.
Velocity magnitude distribution at various stages (the legend applies to all the snapshots).
To clarify the visualization, the fields were interpolated on a spatial grid (not involved

in the SPH computation). Distances are in metres.
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Figure 9. Collapse of a water column in a tank simulated with the present SPH k–ε model. Zoom on the
particle positions near the wave front at t = 0.5 s (axis are labelled in metres).
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Figure 10. Collapse of a water column in a tank simulated with the present SPH k–ε model
(solid lines). Non-dimensional maximum x-position X∗ = X/a and water depth H∗ = H/(2a)

versus non-dimensional time t∗ = t (a/2g)1/2 (a is the initial column width). Validation with
experiments (circles) from Reference [22].

in terms of shape of the free surface, which is of a great interest for all possible applications in
environmental fluid mechanics. For example, estimating wave breaking is of major importance
in coastal engineering, and the design of sea defence requires the prediction of wave run-up and
overtopping. Both phenomena cannot be properly modelled without an appropriate prediction of
the free surface in space and time. The next section will clarify this point and show that a more
complicated approach is necessary for such a purpose.

7. EXPLICIT ALGREBRAIC REYNOLDS STRESS MODELS

Despite its ability to correctly simulate complex flows, the k–ε model was proved to be inaccurate
when modelling violent distortions, or more generally non-isotropic flows, in which the largest
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turbulent eddies can exhibit a complex behaviour involving non-linear dependency on boundary
conditions (see e.g. Reference [23]). A more accurate approach, still based on a Reynolds-averaging
idea, was first proposed by Pope [24] for two-dimensional flows, then extended by Gatski and
Speziale [25] to three dimensions. However, in the following we will refer to Reference [26].
Referred to as ‘EARSM’, these closure forms consist of setting Reynolds stresses through an
explicit dependency upon the rate-of-strain and vorticity tensors components as

R= 2

3
kI − 2C�

k2

ε

[
S + C2

k

ε
(SX−XS)

]
(57)

where S’s components are defined by (39), while the components of the vorticity (or rotation rate)
tensor X are

�i j = 1

2

(
�ui
�x j

− �u j

�xi

)
(58)

One should emphasize the fact that model (57) is only valid in two dimensions; we will then
reduce our considerations to this case in the present section. If the constant C2 was zero, the above
equation would simply give Boussinesq’s model (38) with an eddy viscosity specified by (42),
in which there is no dependency on X. The additional terms presented in (57) hence model the
possible effects of mean flow rotation, but also non-linear strain dependency. In the form presented
here, the coefficients C� and C2 are defined by

C� = B3

2

P∗ + B0

(P∗ + B0)2 + (B2�∗)2

C2 = B2

P∗ + B0

(59)

where P∗ = P/ε is the production-to-dissipation ratio and �∗ = k�/ε, where �2 = 2X : X is the
scalar mean rotation rate (squared). The model constants are B0 = 0.8, B2 = 4

9 and B3 = 8
15 . One

can see that C� is no longer a constant but depends on the production (among other variables).
The production rate, as defined by P = −R : S, is thus more complicated than the simple formulae
(45) and (47) used in traditional Boussinesq-type models, and also depends on �. The explicit
dependency is given by the following third-order polynomial equation:

P∗3 + 2B0P
∗2 −

(
B3

2
S∗2 − B2

2�
∗2 − B2

0

)
P∗ − B0B3

2
S∗2 = 0 (60)

with S∗ = kS/ε. Solution to (60), discussed in Reference [26], becomes linear in S∗ for large
strain in the particular case of a shear flow (i.e. � = S), as previously suggested by Equation (47).
A second consequence of the variability of C� should be the explicit dependency of the eddy
viscosity on production through (42). However, it is known that accounting for such a dependency
often yields numerical instabilities [27]; therefore we considered in (42)—and thus in (57)—a
traditional constant value of 0.09 for C�.

Modelling turbulence with the EARSM then consists of solving the RANS momentum equation
(37) with Reynolds stresses defined by (57). A possible SPH form for the stress divergence applied
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to particle a is [
1

�
∇ · (�R)

]
a

=∑
b
mb

(
Ra

�a
+ Rb

�b

)
· ∇awab (61)

It should be used in place of the SPH turbulent viscous term in (40). In the form (61), SPH
Reynolds forces present the linear momentum conservation property already mentioned in part 3;
however, conservation of angular momentum is generally broken. Although some authors (see e.g.
Reference [28]) use a form like (61) to model viscous forces, it is known to be rather sensitive
to particle disorder. Hence, in the present work we suggest to replace (61) with an additional
SPH-viscous term in the momentum equation, to yield

dua
dt

=−∑
b
mb

[(
pa
�2a

+ pb
�2b

− �e,a + �e,b
�a�b

uab
r2ab

rab ·
)

∇awab − P̃ab

]
+ g (62)

The new viscous term P̃ab is an SPH approximation of the divergence of the non-linear term
involving SX−XS in (57), and is defined as

P̃ab =− �̃T,a + �̃T,b

�a�b

xuab
r2ab

rab · ∇awab (63)

�̃T,a being a non-linear eddy viscosity given by

�̃T,a =C2,a
ka�a

εa
�T,a (64)

(one should keep in mind that C2, defined by (59), is not a constant and thus should be calculated
for each particle), and x a 2D constant second-order tensor playing the role of a ‘rotation unit
tensor’:

x=
(

0 1
−1 0

)
(65)

With the model presented above, the total viscous SPH force (involving Pab + P̃ab) is in the
generic form (24)—except that we now have averaged velocities, with

Aab =−mamb

�a�b

rab · ∇awab

r2ab
(Ma + Mb) (66)

an eddy viscosity tensor Ma being now defined for all particles as

Ma = �e,aI − �̃T,ax (67)

The non-linear viscous term (67) no longer vanishes for a rigid body rotation, because of the x
tensor. However, the definition of x, together with (25) and (34), shows that it does not generate
any additional mean-flow energy dissipation; the new viscous term thus redistributes kinetic energy
in a different manner. Note that, although we refer to the linear model (24), model (63) contains
a non-linearity in the terms like �̃T,auab, thus involving �auab through the definition (64) of the
non-linear viscosity. Equations (44) and (53) are still needed to calculate ka and εa , both required
in (57) and (59). The rotation rate �a of particle a may be estimated from its definition (58)
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through equation (48) for the calculation of the rate-of-strain components. An interesting feature
of EARSM, particularly in the SPH context, is that no wall boundary condition is required for
Ri j , Reynolds stresses being prescribed everywhere from (57). Boundary conditions regarding k
and ε are unchanged.

An EARSM seems not particularly interesting in the simple case of shear flows like the open-
channel presented at the end of Section 5, since the presented model is designed to provide the
same results as k–ε for simple shear flows. However, even in such an elementary flow, EARSM
provide better results, as it can be seen in Figure 11; in particular, the vertical distribution of
turbulent kinetic energy is improved in comparison to the k–ε results presented in Figure 6.
Numerical tests have shown that, in this particular case, the progress is mainly due to the corrected
definition of production rate by Equation (60). Indeed, in the vicinity of the channel bed, the
non-dimensional strain S∗ is slightly smaller than the equilibrium value of C−1/2

� = 3.33 predicted
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Figure 11. Open-channel turbulent steady flow. Vertical distributions of: (a) k/u2∗; (b) εH/u3∗;
(c) �T /Hu∗; and (d) axial velocity in m/s versus non-dimensional distance to the bed.
Present SPH method with © EARSM and ♦ linear k–ε model; — semi-empirical [20]; ×

experimental [20]; + finite elements k–ε [21].
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by the standard theory of log-layers; as a consequence the ratio of production to dissipation P∗
is slightly underestimated with traditional models (45) and (47), while (60) provides the correct
amount of turbulent kinetic energy near the bed, which then diffuses into the water column. As a
consequence, eddy viscosity is also slightly better predicted near the bed.

The collapse of a water column shown in Section 6 is so complex that traditional models like
linear k–ε should be insufficient for an accurate description of velocity fields and free-surface shape.
At the wave breaking point, strain is rather high and vorticity appears, involving non-linear terms
in Reynolds stresses. A smaller water column was simulated with k–Lm , linear k–ε and EARSM,
then compared with a laboratory experiment. Even with such an elementary comparison, Figure 12
shows that increasing the turbulence closure complexity significantly improves the accuracy of
the free-surface prediction, as required. In particular, it can be seen that the non-linear viscosity,
increasing diffusion, is capable of predicting the correct behaviour of wave breaking. Hence, we
suspect that a correct modeling of complex wave motion (breaking, overtopping of a coastal dyke)
could not be done without a sophisticated turbulence closure. However, the free-surface location
from experimental pictures is too rough to draw out solid conclusions about the real accuracy
of the model. Thus, despite these encouraging features, the present model would require a more
accurate and systematic validation; the EARSM SPH model will be presented in further details in
a later publication.

Figure 12. Collapse of a water column simulated with present SPH model and observed in a real tank at
two stages (left column: t = 1.02 s; right column: t = 1.10 s). From top to bottom: k–Lm , linear k–ε and
EARSM SPH models, experiments. The shape of the experimental free surface (projected on the front
glass) is approximately shown with solid lines; one should not consider three-dimensional perspective for

this comparison with the 2D-model.
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8. 3D LARGE EDDY SIMULATION

Despite its accuracy, the EARSM described in the previous section is somewhat complex and is
still based on Reynolds-averaged values. Alternatively, LES, now recognized as a key tool for
turbulence modelling (see e.g. Reference [23]), provides much more detailed information on the
turbulence itself and is more suitable for far-from-equilibrium flows, while considering reasonable
computational costs (whereas in the particular of the SPH method, the coast can be high; this will
be discussed later). The main idea of LES is to simulate the large scales of turbulent motions while
modelling the dissipative effect of smaller ones. This is justified by the fact that large scales carry
the main part of turbulent kinetic energy and are most likely anisotropic whereas small scales are
believed to be almost isotropic. It is hence essential to define modified fields that only contain the
large-scale components of instantaneous fields. In the context of Eulerian methods, each true flow
variable A is thus decomposed into a large-scale component Ã and a small scale (or subgrid scale)
component A′ such as A= Ã + A′, where Ã is defined by the following filtering operator:

Ã(r) =
∫

�
A(r′)G�(r − r′) dr ′ (68)

where G� is a filter function depending on the separation between spatial locations. Coming back
to SPH, one can firstly notice that Equation (68), from a formalistic point of view, is very similar to
the basic SPH relation (1): the kernel function is analogous to the filter function and the smoothing
length h is equivalent to the filter size �. Thus, one can define an SPH filtered quantity Ã as

Ãa =∑
b

mb

�b
Abwab (69)

When filtering the continuous Navier–Stokes equations, one obtains a set of equations very similar
in form to the RANS equations, with averaged values replaced by filtered ones and the Reynolds
stress tensor changed with a subgrid (here, sub-particle) scale one, representing the contribution
of small scales (i.e. turbulent structures smaller than the particle size) on larger scales. When
modelling this tensor through a sub-particle eddy viscosity assumption, the filtered Navier–Stokes
equations are identical to the eddy-viscosity RANS equations, from a formalistic point of view. In
SPH formalism, according to the above-mentioned similarity between the Reynolds-averaged and
filtered Navier–Stokes equations, they are hence written as

d̃ua
dt

=−∑
b
mb

(
p̃a
�2a

+ p̃b
�2b

− �S,a + �S,b

�a�b

ũab
r2ab

rab ·
)

∇awab + g (70)

d�a
dt

=∑
b
mbũab · ∇awab (71)

in analogy with (58), with �a ≈ �̃a (since the fluid is nearly incompressible) and ũab = ũa − ũb.
The filtered pressure p̃a is once again calculated from the density by the state equation (14). The
sub-particle eddy viscosity of particle a �S,a = �a�S,a can be modelled by the following SPH
Smagorinsky model:

�S,a = (CSh)2
√
2̃sa : s̃a (72)

where s̃a denotes the filtered rate-of-strain tensor associated to particle a, thus defined from
Equation (39) with filtered velocities in place of Reynolds-averaged ones; hence a formula like
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(52) can still be used in this context. CS is the Smagorinsky constant usually close to 0.15 [23],
and h is the smoothing length (or alternatively initial particle spacing), playing here the role of a
constant numerical mixing scale.

Despite its apparent simplicity, in contrast to traditional RANS models presented in previous
sections, LES must always be done in three dimensions (since turbulent structures are essentially
three dimensional) and results need to be averaged for industrial use, which requires substantially
more computational time. This SPH Smagorinski model was implemented in a 3D SPH code and
tested in a turbulent open-channel flow similar to the case described in Section 5, with different
size and flow features. The canal is 1.2m long, 0.2m wide and 0.4m high and contains 100 000
fluid particles. The bulk velocity is 1.345m/s, leading to a Reynolds number of 538 000. The left
picture of Figure 13 presents an instantaneous field of velocity magnitude; one can notice that it is
typically turbulent, with velocity fluctuations in all directions. However, the numerical fluctuating
motion inherent to the Lagrangian basis of SPH, which behaves like a Monte-Carlo method even in
laminar flows, raises new challenges in terms of separating this numerical noise from real turbulent
fluctuations, which needs further investigation. Nevertheless, the averaged axial velocity profile is
consistent with the log-law, as shown on the right side of Figure 13 (time-averaging velocities can
here be done since the mean flow is steady).

The model was also applied to a 3D collapse of water column similar to those presented
in Section 7, with 120 000 fluid particles. The initial water box is 0.3m high, 0.3m long and
0.6m wide, while the tank length is 0.9m. Figure 14 shows instantaneous free-surface evolution,
revealing a realistic breaking wave when compared to the experimental produced at the Technical
University of Delft [6]. Further investigation is currently carried out to get information relative to
turbulent parameters and average fields for the presented cases. More details about the presented
SPH LES model can be found in References [6, 8]. Finally, one should mention that the three-
dimensional SPH approach together with the LES model reaches to high computational costs, due
to the numerous filtering operations like Equation (69). This makes detailed numerical investigation
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Figure 13. 3D turbulent open-channel flow simulated with the present SPH LES model. Left:
3D turbulent velocities. Right: vertical profile of averaged axial velocity; © present SPH

method with LES model; — smooth bed log-law.
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Figure 14. Collapse of a water column: comparison between present
3D SPH LES method and laboratory experiments [6] at two different

stages: t = 0.485 s (left) and t = 0.890 s (right).

uneasy; further work on this subject will certainly need parallel algorithms. Thus, no definitive
conclusions can be drawn regarding the possible use of LES in SPH for industrial or environmental
applications.

9. CONCLUSIONS AND FUTURE WORK

From the above-mentioned applications, it appears that SPH is a very promising method for the
simulation of complex turbulent flows involving distorted free surfaces in two or three dimensions.
It may be emphasized that the developments presented herein do not cover all the possibilities
of SPH in CFD: in particular, the method allows the modelling of floating bodies, fluid–structure
interactions and two-phase flows. The developments made in Section 5 also tend to suggest that
modelling turbulent scalar transport in SPH is a possible task. However, some drawbacks of
the SPH method can easily be pointed out. The Courant condition appearing in (15) leads to
rather small time steps, and the high number of particles required in 3D makes SPH a very
computationally demanding method. The presented explicit weakly compressible scheme could
also be criticized since it generally predicts scattered pressure fields. Some authors like Shao and
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Gotoh [9] have demonstrated the possibility of modelling truly incompressible flows with SPH,
which is an alternative choice to increase the time step and provide smooth pressure fields under
all circumstances.

The presented turbulence closure models, although not yet deeply validated in the case of
complex free-surface flows, have shown to be attractive. Some of them (e.g. k–ε or LES), today
considered as traditional in the context of Eulerian methods, have been proved to be adapted to
the particular context of SPH and were applied with success on validated test cases. The merits of
each model, in terms of accuracy and/or simplicity, partly appear from the presented simulations.
For practical applications in CFD with SPH, it appears that the standard k–ε provides satisfactory
results, while it can be inappropriate in the particular field of free-surface flows. The modelling of
complex surfaces should be more successfully predicted with EARSM, to take account of strong
distorsion and rotation effects. By highlighting the weaknesses of those turbulence closures in
regards of the modelled flows, this work also suggests possible ways of improvements. Hence,
future developments should be done around the problem of free surface and wall effects as well
as associated boundary conditions.

LES was too briefly investigated here to draw definite conclusions. The high 3D computational
time makes this approach especially cumbersome with SPH. Indeed, the use of SPH as an oper-
ational tool for three dimensional applications will require a parallelized code. Among other key
points, further work will focus on this development. One may also mention that other appropriate
and specific turbulent methods, like stochastic (pdf) models (see Reference [23]) were also tried in
the context of SPH [5, 29] and may constitute a suitable alternative to LES to keep computational
time reasonable.

In conclusions, the standard k–ε equations, here applied to SPH, are recommended for practical
applications in industrial or environmental CFD with SPH. However, under specific circumstances,
they should be inappropriate, in particular when modelling very complex free surface, where more
advanced models should be used, like the proposed EARSM.
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